Compact linearization for binary quadratic problems
نویسنده
چکیده
We show that a well-known linearization technique initially proposed for quadratic assignment problems can be generalized to a broader class of quadratic 0-1 mixed-integer problems subject to assignment constraints. The resulting linearized formulation is more compact and tighter than that obtained with a more usual linearization technique. We discuss the application of the compact linearization to three classes of problems in the literature, among which the graph partitioning problem.
منابع مشابه
Compact Linearization for Binary Quadratic Problems subject to Assignment Constraints
We prove new necessary and sufficient conditions to carry out a compact linearization approach for a general class of binary quadratic problems subject to assignment constraints as it has been proposed by Liberti in 2007. The new conditions resolve inconsistencies that can occur when the original method is used. We also present a mixed-integer linear program to compute a minimally-sized lineari...
متن کاملCombinatorial optimization with one quadratic term: Spanning trees and forests
The standard linearization of a binary quadratic program yields an equivalent reformulation as an integer linear program, but the resulting LP-bounds are very weak in general. We concentrate on applications where the underlying linear problem is tractable and exploit the fact that, in this case, the optimization problem is still tractable in the presence of a single quadratic term in the object...
متن کاملLinear Reformulations of Integer Quadratic Programs
Let (QP ) be an integer quadratic program that consists in minimizing a quadratic function subject to linear constraints. In this paper, we present several linearizations of (QP ). Many linearization methods for the quadratic 0-1 programs are known. A natural approach when considering (QP ) is to reformulate it into a quadratic 0-1 program. However, this method, that we denote BBL (Binary Binar...
متن کاملCompact Relaxations for Polynomial Programming Problems
Reduced RLT constraints are a special class of Reformulation-Linearization Technique (RLT) constraints. They apply to nonconvex (both continuous and mixed-integer) quadratic programming problems subject to systems of linear equality constraints. We present an extension to the general case of polynomial programming problems and discuss the derived convex relaxation. We then show how to perform r...
متن کاملLinearization of multi-objective multi-quadratic 0-1 programming problems
A linearization technique is developed for multi-objective multi-quadratic 0-1 programming problems with linear and quadratic constraints to reduce it to multi-objective linear mixed 0-1 programming problems. The method proposed in this paper needs only O (kn) additional continuous variables where k is the number of quadratic constraints and n is the number of initial 0-1 variables.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- 4OR
دوره 5 شماره
صفحات -
تاریخ انتشار 2007